# Can eDNA serve as a monitoring technique for pollinators on rights-of-way



#### **Dr. Ashley Bennett**

Electric Power Research Institute, EPRI





### Today's Agenda

- Right-of-way biodiversity
- Rapid monitoring techniques
- > Overview of 4 research projects
  - Pollinator eDNA in NY
  - Plant and pollinator eDNA in AZ
  - Native Plant / Pollinator Interactions
  - Airborne plant eDNA







### Introduction

#### **Background**

- Utility lands managed with IVM provide biodiversity benefits to pollinators
- Utilities would like to monitor, measure, & track changes over time
- Field surveys are costly
- New rapid assessment methods are needed
- Is eDNA a possible solution?





LGE-KU Solar Site



### Introduction: Environmental DNA

### What is eDNA:

- DNA shed by organisms into the environment
  - Can include microbes, plants, insects, and animals

### Where you find eDNA:

- Water, air, soil
- o Plants
- Carried on insects
- Carried on animals

### Practical Application for ROWs:

- Rapid Biodiversity Monitoring
   Pollinators visiting plants
- Rare or Invasive Species
  - $\circ$  Pollen from bees
  - $\circ$  Air samples
- Construction / IVM Impacts
  - $\circ$  Soil biota
  - Plant / pollinator community change
- Seed Mix Refinement
  - $\circ$  Pollen from bees
  - Understudied plant communities
  - Attractive pollinator plants



### Project 1 NYPA ROWS



A Partnership of + CARACE Arbor Day Foundation Project Collaborators:

- New York Power Authority
- Stantec

### Introduction

### Study Questions:

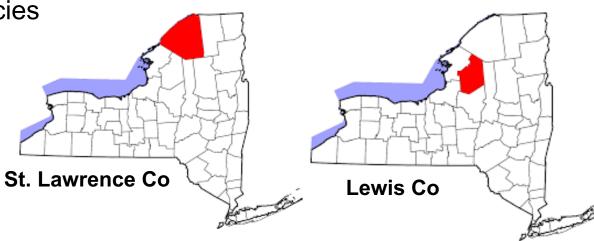
1. Can eDNA assess pollinator communities along ROWs?

2. Does flower morphology impact detection of pollinators?

3. How does eDNA compare to field collections?

### Leverage ROW Research:

- Ongoing research evaluating impact of construction mats on ROW vegetation and pollinators
- > 3-year study, 2024 is final year of data collection
- 1. Do construction mats impact right-of-way vegetation and pollinator communities post disturbance?
- 2. Does proximity to areas disturbed by construction mats impact right-of-way vegetation?




#### Methods Overview:

- 1. Field collected pollinators
  - ROW in New York State
  - Timed transects
  - Sampling method Netting
  - Bees ID to species
- 2. Field collected flowers
  - Flower heads collected from 7 different species
  - 6 native and 1 non-native
  - 4 open and 3 tubular
- 3. Replicates collected
  - 10 replicates / flower species
  - 10 flower heads / replicate
- 4. DNA metabarcoding
  - Detects eDNA left by pollinators visiting flowers

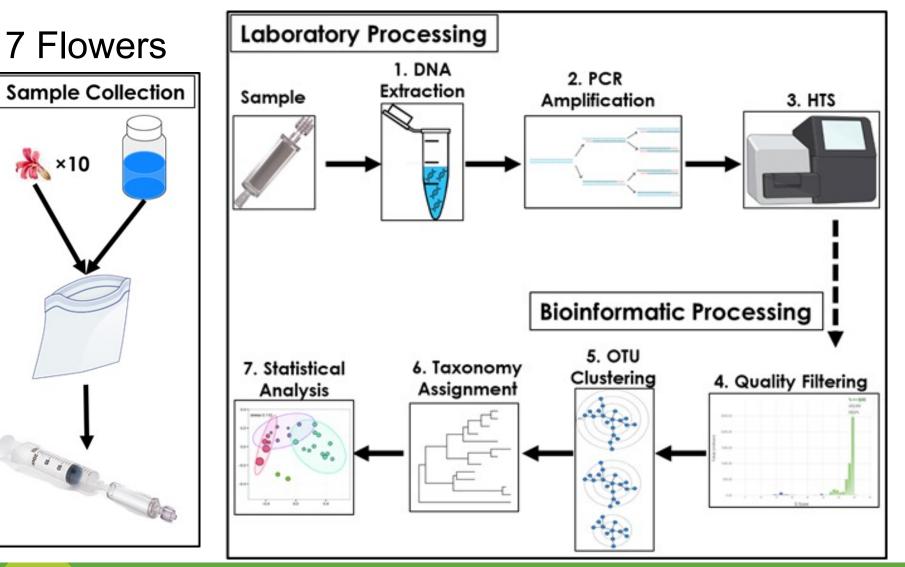



Photo: Lew Payne

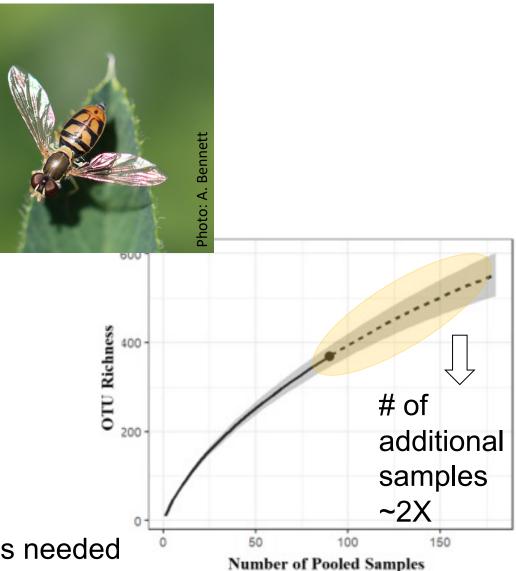




### Methods: eDNA Field & Lab



A Partnership of UAA\* + Of Arbor Day Foundation


#### TREES & UTILITIES CONFERENCE 2024

9

### **Results**

| Order         | # of OTUs | # of Occurrences |
|---------------|-----------|------------------|
| Diptera       | 143       | 386              |
| Coleoptera    | 46        | 115              |
| Hemiptera     | 42        | 141              |
| Hymenoptera   | 42        | 93               |
| Lepidoptera   | 36        | 100              |
| Orthoptera    | 17        | 38               |
| Psocoptera    | 8         | 17               |
| Ephemeroptera | 4         | 4                |
| Phasmatodea   | 4         | 5                |
| Odonata       | 2         | 3                |
| Thysanoptera  | 2         | 2                |
| Blattodea     | 1         | 1                |
| Mantodea      | 1         | 1                |
| Mecoptera     | 1         | 1                |

#### Syrphid Fly



High diversity of insect taxa detected
 Most detections were flies followed by beetles

Richness curves estimated more sampling was needed

## A Partnership of

#### • TREES & UTILITIES CONFERENCE 2024

10

### **Results: Transects vs eDNA**

### **Bees & Butterflies**

#### Bees

- Greater detection with netting
- Apidae highest followed by Andrenid (miner) & Halictid (sweat bees)
- Very low eDNA detections

### > Butterflies

- Greater detection with netting
- Nymphalid (brush-footed) Pierid (whites / sulphurs), & Hesperid (skippers) most abundant leps not detected with eDNA
- Only 1 butterfly family detected with eDNA

| Order       | Family         | Count with<br>Ground | Occurrences<br>with eDNA |
|-------------|----------------|----------------------|--------------------------|
| Hymenoptera | Andrenidae     | 131                  | 1                        |
|             | Apidae         | 1672                 | 24                       |
|             | Chrysididae    | 1                    | 0                        |
|             | Cimbicidae     | 1                    | 2                        |
|             | Colletidae     | 30                   | 0                        |
|             | Crabronidae    | 26                   | 0                        |
|             | Halictidae     | 116                  | 15                       |
|             | Ichneumonidae  | 3                    | 0                        |
|             | Megachilidae   | 38                   | 3                        |
|             | Mellitidae     | 4                    | 0                        |
|             | Pompilidae     | 2                    | 0                        |
|             | Sphecidae      | 3                    | 0                        |
|             | Tenthredinidae | 1                    | 2                        |
|             | Vespidae       | 8                    | 3                        |
| Lepidoptera | Erebidae       | 17                   | 4                        |
|             | Geometridae    | 1                    | 15                       |
|             | Hesperiidae    | 98                   | 0                        |
|             | Lycaenidae     | 36                   | 0                        |
|             | Noctuidae      | 1                    | 14                       |
|             | Nymphalidae    | 231                  | 0                        |
|             | Papilionidae   | 41                   | 1                        |
|             | Pieridae       | 129                  | 0                        |



hotos: A. Bennett

### **Results**

#### Ground counts for Hymenoptera by flower species Red = Families undetected with eDNA; Green = Families detected with eDNA

| Flower        | ower Andrenidae Apidae Cimbicidae |                                       | Halictidae | Megachilidae | Tenthredinidae | Vespidae |   |  |  |
|---------------|-----------------------------------|---------------------------------------|------------|--------------|----------------|----------|---|--|--|
| Open Flowers  |                                   |                                       |            |              |                |          |   |  |  |
| Common        |                                   | 92                                    |            |              |                |          |   |  |  |
| Boneset       |                                   | 92                                    |            |              |                | -        | 0 |  |  |
| Swamp Candles |                                   | 1                                     |            | 2            |                |          | - |  |  |
| Black-eyed    |                                   | ,                                     |            |              |                |          |   |  |  |
| Susan         |                                   | '                                     |            |              |                |          |   |  |  |
| ,<br>,        | -                                 | - '                                   | -          | 1            | 2              | -        | - |  |  |
| White         |                                   | ,                                     |            |              |                |          |   |  |  |
| Meadowsweet   | 10                                | 41                                    | 1          | 2            | 2              | 1        | 1 |  |  |
|               |                                   |                                       | Tubular    | Flowers      |                |          |   |  |  |
| Allegheny     |                                   | · · · · · · · · · · · · · · · · · · · |            |              |                |          |   |  |  |
| Monkeyflower  |                                   | 2                                     |            | 0            | -              | _        | - |  |  |
| Bird Vetch    |                                   | 21                                    |            | 7            | 2              |          | - |  |  |
| Blue Vervain  | 7                                 | 56                                    | -          | 2            | 3              | -        | - |  |  |

- High Apidae (bumble bee) eDNA detections
- Bees highly attracted to blue vervain and meadowsweet

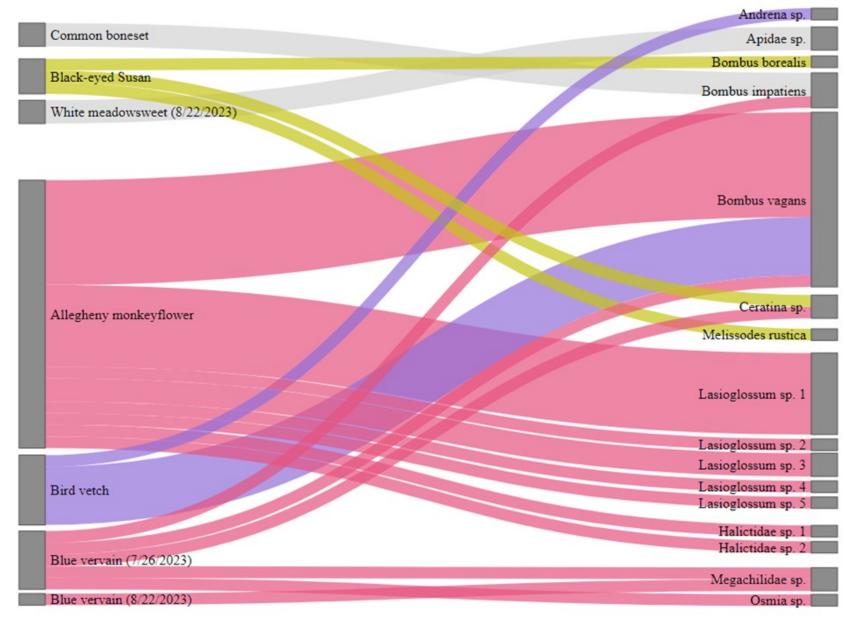

### 12 TREES & UTILITIES CONFERENCE 2024



Photo: Truelove Seed

### Results

- Relationship between bee groups and sampled flowers
- Bar thickness indicates number of DNA fragments detected for each flower
- Allegheny monkeyflower had more visits by *B.* vagans followed by Lasioglossum sp. 1
- Black-eyed Susan visited by
  - 3 bees but number of DNA fragments for each group was low
  - Bombus borealis, Melissodes rustica, Ceratina sp.





### **Key Findings**

- 1. eDNA resulted in high detections of insect richness
  - Mostly non-pollinator groups; Hymenoptera ~10%
- 2. Species richness curves estimated more sampling
  - 2x more to increase richness by 50%
- 3. Insect richness differed by flower
  - Black-eyed Susan highest observed richness
  - Allegheny monkeyflower highest eDNA richness
- 4. eDNA bee detections
  - 4 bee families detected
  - *B. vagans* most common; Honey bees not detected
- 5. Flower morphology
  - 84% of bee detections were on tubular flowers
- 6. Aerial netting vs eDNA sampling
  - Overlap between methods was low
  - Halictid bees under-detected by eDNA







### Project 2 SRP ROWs



A Partnership of + CAA© Arbor Day Foundation Project Collaborators:

- Salt River Project
- Northern Arizona University

### **Project in Progress**

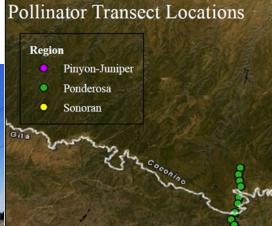
- Determine the value of IVM practices to native plants & pollinators across three ecoregions in Arizona
- Compare pollinator abundance and richness on and off the ROW







### **Project in Progress**






024

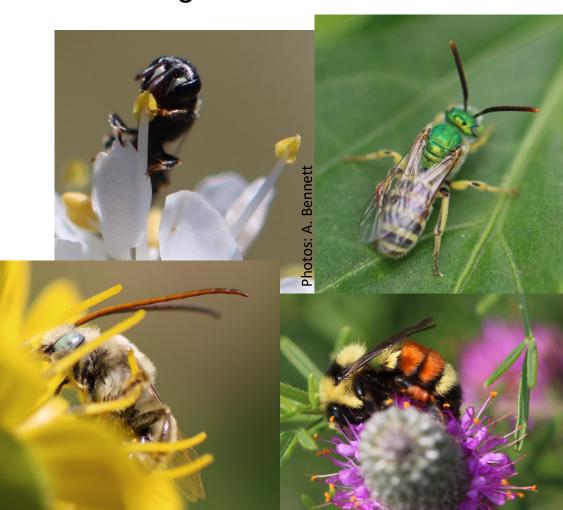
# Pinyon Juniper







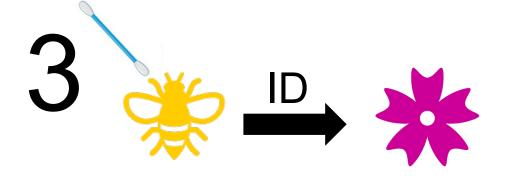



### **Results 2022: Ponderosa Pine**

Significantly higher bee abundance on ROW compared to off ROW Significantly higher bee **richness** on ROW compared to off ROW

> Differences in bees only found for Ponderosa Pine ecoregion

#### **Common Bee Genera**


| Off F        | ROW         | On ROW       |             |  |  |
|--------------|-------------|--------------|-------------|--|--|
| Genus        | Individuals | Genus        | Individuals |  |  |
| Agapostemon  | 0           | Agapostemon  | 5           |  |  |
| Apis         | 19          | Apis         | 39          |  |  |
| Centris      | 7           | Centris      | 0           |  |  |
| Hylaeus      | 5           | Hylaeus      | 10          |  |  |
| Lasioglossum | 79          | Lasioglossum | 123         |  |  |
| Melissodes   | 5           | Melissodes   | 12          |  |  |



### **Project Goals - eDNA**



- 1. Compare pollinators collected by active sampling to data collected by eDNA sampling
- 2. Determine whether pollinator eDNA collected from flowers can detect differences in visitation
- 3. Evaluate whether eDNA collected from pollinators can identify flower species serving as foraging resources





Study location: Ponderosa Pine Sampled ROWs: 7

### **Pollinator Sampling**

- Sampled 6 pollinator groups
  - $\circ$  4 bees
  - $\circ$  2 flies
- Netted ~7-30 bees / group
- Cooled pollinators on ice
- Swabbed bodies for eDNA
- Swabs placed in sterile vials
- Samples stored in -80° freezer
- DNA metabarcoding
  - Goal: Detect plant eDNA

Ponderosa Pine: Elevation > 5000'

ID



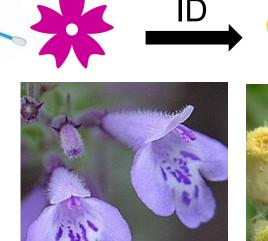




#### TREES & UTILITIES CONFERENCE 2024

20

#### **Sampled Pollinator Groups**






Location: Ponderosa Pine Sampled ROWs: 7

### Plant Sampling

- Sampled 6 plants
  - o 3 on ROW 📎
  - o 3 off ROW
  - Targeted 30 plants / spp.
- Flowers placed in sterile vials
- Samples stored in -80° freezer
- Samples stored in freezer
- DNA metabarcoding
  - Goal: Detect bee eDNA



False Pennyroyal

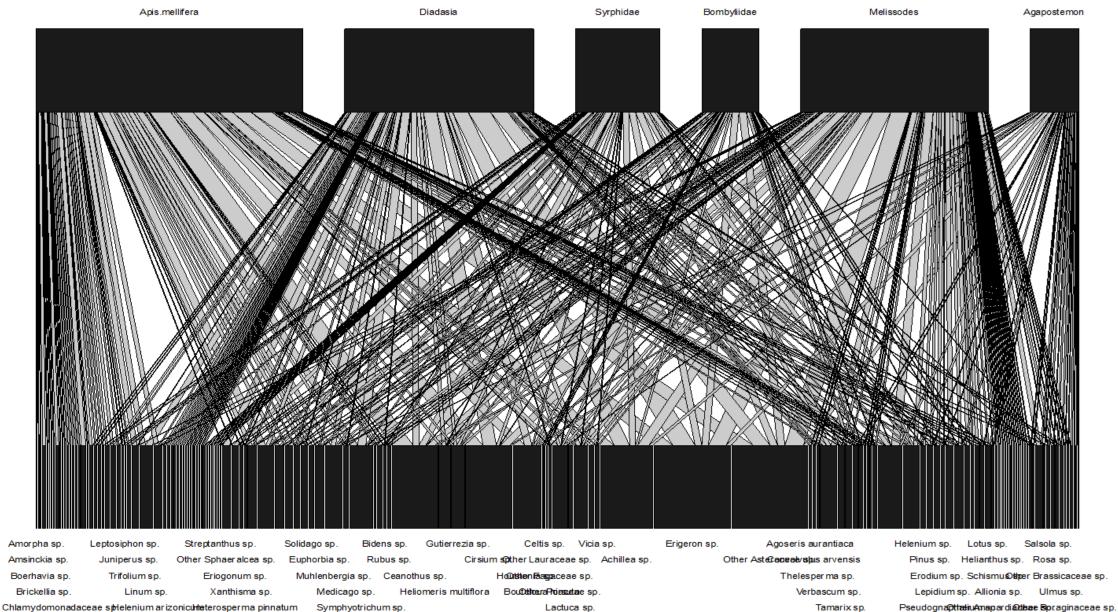
Pygmy Bluet



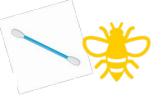
Macoun's rabbit-tobacco

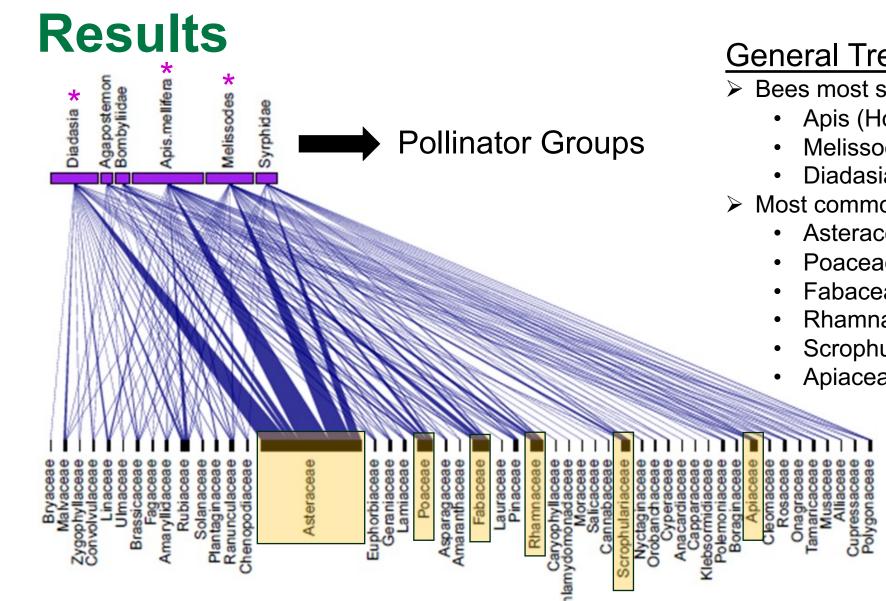


Wright's Trefoil




**Bull Thistle** 




### **Results** Plant / Pollinator Network – All Taxon



bla sp. sa sp. assicaceae sp. Jimus sp. spraginaceae sp.







#### General Trends:

- Bees most sampled
  - Apis (Honey bees)
  - Melissodes (Long-horned bees)
  - Diadasia bees
- Most common plant families
  - Asteraceae (asters)
  - Poaceae (grass)
  - Fabaceae (pea)
  - Rhamnacea (buckthorn)
  - Scrophulariaceae (figwort)

**Plant Groups** 

Apiaceae (carrot)





### **Results**

| X |
|---|
|   |
|   |

| Plant Family     | Agapostemon | Apis mellifera | Bombyliidae | Diadasia | Melissodes | Syrphidae | Total | Plant Family                                  | Agapostemon Api | is mellifera | Bombyliidae | Diadasia | Melissodes | Syrphidae | Total    |
|------------------|-------------|----------------|-------------|----------|------------|-----------|-------|-----------------------------------------------|-----------------|--------------|-------------|----------|------------|-----------|----------|
| Apiaceae         | 3           | 8              | 1           | . 2      | . 11       | 8         | 33    | Moraceae                                      |                 | 1            |             |          |            |           | 1        |
| Asparagaceae     |             | 5              |             | 1        | . 2        |           | 8     | Musaceae                                      | 1               |              |             |          | 1          | . 1       | 3        |
| Asteraceae       | 25          | 161            | 33          | 142      | 120        | 50        | 539   | Nyctaginaceae<br>Onagraceae                   |                 |              |             |          | 1          | 2         | 2        |
| Boraginaceae     | 1           | 3              |             |          | 1          | 1         | (     |                                               |                 | 1            |             |          | 1          |           | 2        |
| Brassicaceae     | 5           | 2              |             | 5        | 3          | 1         | 17    | Pinaceae                                      | 3               | 6            | 1           | 1 2      | . 7        | 1         | 20       |
| Bryaceae         |             |                |             | 1        |            |           |       | Plantaginaceae                                |                 | e            |             | 2        |            |           | 8        |
| Cannabaceae      |             |                | 1           |          | 1          |           |       | Poaceae                                       | 4               | 21           | . 10        | ) 15     | 22         | 5         | 77       |
| Capparaceae      |             |                |             | •        | - 1        |           |       | Polemoniaceae                                 | 1               | 4            |             | j<br>D   | 2          | 2         | 12<br>14 |
| Caryophyllaceae  |             | 2              |             |          | -          |           |       | Polygonaceae<br>Ranunculaceae                 | 1               | ر<br>و       | . 4         | 2<br>} F | 5          | -         | 20       |
| Chenopodiaceae   | 2           | 2              |             | 2        | )          | 1         | -     | Rhamnaceae                                    | 4               | 28           | 1           | 1 8      | 11         | -         | 61       |
| Chlamydomonada   |             | 1              |             | 2        | •          | 1         |       | Rosaceae                                      | 1               | 4            |             |          | 5          | 2         | 12       |
| -                | 1           | 1              |             |          | 2          | 1         |       | Rubiaceae                                     | 4               | 19           | 3           | 3 13     | 3          | 2         | 44       |
| Cleomaceae       | 1           | 1              |             |          | 2          | 1         |       | Jallaceae                                     |                 | 1            |             |          |            |           | 1        |
| Convolvulaceae   | 1           |                |             | 5        | 1          |           |       | Scrophulariaceae                              |                 | 22           |             | 5        | 8          | 6         | 41       |
| Cupressaceae     |             | 2              |             |          |            | 2         |       | Solanaceae                                    | 1               | 2            | . 1         | 1        |            |           | 5        |
| Cyperaceae       |             | 1              |             |          | 4          |           | Ę     |                                               |                 | 1            |             | 1        | . 3        | 3         | 8        |
| Euphorbiaceae    |             | 5              | 3           | 3 2      | 2          |           | 12    | Ulmaceae<br>Zygophyllaceae                    | 2               |              |             | 1        | . <b>1</b> |           | 4        |
| Fabaceae         | 5           | 38             | 5           | ; g      | 19         | 4         | 83    | Total                                         | 66              | 378          | 77          | 254      | 252        | 114       | 1159     |
| Fagaceae         |             | 1              |             | 1        | . 1        |           | 4     |                                               |                 | 0,0          |             | 201      |            |           | 1100     |
| Geraniaceae      |             | 4              | 1           | . 2      | 4          |           | 11    |                                               |                 |              |             |          |            |           |          |
| Klebsormidiaceae |             |                |             |          | 1          |           | 1     |                                               | المعام مع       | -1:1         |             |          | inte / in  |           | 1        |
| Lamiaceae        |             | 1              | 4           | 1        | . 2        |           | 1(    | Number of distinct DNA fragments / pollinator |                 |              |             |          |            |           |          |
| Lauraceae        |             |                | 1           |          |            |           | 1     | • 161                                         | unique A        | Astera       | ceae D      | NA fr    | admei      | nts on    | Apis     |
| Linaceae         |             | 7              |             | 9        | 1          |           | 17    |                                               | •               |              |             |          | •          |           |          |
| Malvaceae        |             | 1              | 1           | . 11     | . 1        |           | 14    | ∎ • ⊓igr                                      | nest plant      |              | iragme      | ents t   | rom: A     | ster,     |          |

bean, grass, buckthorn, bedstraw, and figwort



### **Results**

| Diadasia - 1      | Diadasia- 2          | Large variability                  |
|-------------------|----------------------|------------------------------------|
| Asteraceae sp.    | Achillea millefolium | specimen to                        |
| Avena sp.         | Achillea sp.         | specimen                           |
| Calliandra sp.    | Asteraceae sp.       | <ul><li>22 bees sampled</li></ul>  |
| Ceanothus sp.     | Cirsium sp.          | <ul> <li>5-16 plant DNA</li> </ul> |
| Cirsium sp.       | Erigeron sp.         |                                    |
| Cosmos bipinnatus |                      | fragments / bee                    |
| Erigeron sp.      |                      | were detected                      |
| Erodium sp.       |                      |                                    |
| Fabaceae sp.      |                      |                                    |
| Houstonia sp.     |                      |                                    |
| Lepidium montanum |                      |                                    |
| Linum sp.         |                      |                                    |
| Lotus sp.         |                      |                                    |
| Penstemon sp.     |                      | aster 1/2                          |
| Tamarix sp.       |                      | Contra and                         |
|                   |                      | The Market                         |

Xanthisma sp.



| Melissodes - 1       | Melissodes - 2    |
|----------------------|-------------------|
| Achillea millefolium | Achillea sp.      |
| Apiaceae sp.         | Asteraceae sp.    |
| Asteraceae sp.       | Cannabis sativa   |
| Ceanothus sp.        | Ceanothus sp.     |
| Cirsium sp.          | Cirsium sp.       |
| Cyperaceae sp.       | Erigeron sp.      |
| Delphinium sp.       | Melilotus sp.     |
| Erigeron sp.         | Musaceae sp.      |
| Fagaceae sp.         | Pinus sp.         |
| Festuca arizonica    | Schismus sp.      |
| Helenium arizonicum  | Verbascum thapsus |
| Helenium sp.         |                   |
| Muhlenbergia sp.     |                   |
| Pinaceae sp.         |                   |
| Pinus sp.            |                   |
| Poaceae sp.          |                   |
| Tragopogon pratensis |                   |
| Verbascum sp.        |                   |
|                      |                   |

Verbascum thapsus

- Large variability specimen to specimen
- ➢ 25 bees sampled
- > 3-28 plant DNA fragments / bee were detected





### **Next Steps**

- 1. Complete preliminary analyses of pollinator swabs 🔆
  - Informs plant eDNA on pollinators
- 2. Metabarcoding results from plants still needed 🔆
  - Will identify pollinators visiting plants
- 3. Data analyses of plant collected eDNA data needed 💥
- 4. Compare field collected pollinators to eDNA data
  - Are results similar?
  - Are results different but complementary?
- 5. Evaluate plant and pollinator data for indicators of alignment
  - Do plant samples suggest common pollinator visitors
  - Do pollinator samples suggest preferred plants for foraging
  - Does data from both the plants and pollinators align







### Project 3 Native Plant and Pollinators





#### Project Collaborators:

- University of Illinois
- Stantec

### Background

> Builds upon previous eDNA studies  $\succ$  Focus is on improving bee detections

- Refining field methods
- Evaluating different eDNA labs
- Increasing sampling effort

#### **Study Objectives**

- Compare sampling methods • Active vs eDNA
- Assess richness & relative abundance across different flowers with eDNA
- Evaluate flower shape for detection differences: tubular vs open
- Compare costs across methods





Study location:

• Stantec Nursery - Walkerton, IN

**Methods** 

- Active pollinator sampling

   Observations & vacuum
- Target 20 native flower species
- Collect flower heads from each species
  - 6 replicates / flower species
  - 5 flowers / replicated sample
- Flower heads into distilled water, shake
- Water then filtered; filter placed in CTAB
- Stored at room temperature until processed
- Metabarcoding used to ID pollinators (bees)





### Data collection in progress.....



### **Project 4** Airborne eDNA

Project Collaborator: University of Illinois •



UAA

Arbor Day Foundation

### Background

- Can airborne eDNA complement remote monitoring of pollinator habitat quality?
- Can airborne eDNA detect flowering native forb species?

**Study Objectives** 

- Compare the species of native flowering plants detected by ground vegetation surveys to airborne eDNA
- Calculate the percentage of native flowering plants detected with airborne eDNA to ground vegetation surveys





#### **Study Location**

- Central, Illinois
- 9 sites
  - Seeded to native seed mixes

Vegetation Sampling

- Flowering plants are recorded using
  - o 2 transects each 100m
  - 1 meander survey, 15 minutes
- 3m and 0.5m satellite imagery collected
  - Flower cover
  - Seasonal flower phenology
  - $\circ~$  Lacks species level data



### **Airborne eDNA Sampling**





• 3 dust traps at all 9 sites











#### Airborne eDNA sampling

- Traps checked twice a month + vegetation surveys performed
- Traps washed with distilled water in field
- Water + eDNA collected in sterile vials
- Samples filtered once back at lab
- Metabarcoding used to ID plant eDNA



### Data collection in progress.....



### Summary

- eDNA monitoring technology is promising
  - Non-destructive sampling
  - Less time & labor intensive
  - $\circ~$  Taxonomic experts not required
- Additional research needed to refine pollinator detections, specifically bees
- Pollinator eDNA is a developing field

   Rapidly developing new lab methods
   Refining field data collection methods
- Cost comparisons across techniques are needed
- Comparisons of eDNA methods are needed
  - Example: eDNA from flowers and bees
  - *Example*: value of airborne eDNA



# **THANK YOU**

Dr. Ashley Bennett | EPRI abennett@epri.com



